Seguici e condividi:

Eroica Fenice

numeri primi

L’enigma dei numeri primi

Un numero primo è un numero naturale maggiore di uno e divisibile solo per uno e per se stesso. Semplice no? Eppure i numeri primi hanno suscitato l’interesse di tutti i matematici. Ancora oggi sono avvolti da un alone di mistero perché quel che sappiamo di loro non ci basta.

Cosa li rende così speciali?

Anzitutto i numeri primi, nella loro successione naturale, sono isolati. Lo scrittore Paolo Giordano lo sapeva bene. Ad ispirare il suo romanzo “La solitudine dei numeri primi” è stata proprio la matematica: i protagonisti tendono sempre ad avvicinarsi l’un l’altro, senza mai raggiungersi.

Fuor di metafora non ci sono mai due numeri primi vicini tra di loro. Un esempio perfetto è dato dai cosiddetti numeri gemelli, separati da un solo numero pari – per esempio 11 e 13. Si congettura che questi numeri siano infiniti ma in realtà anche le dimostrazioni volte a dimostrarlo sono limitate.

Se gli atomi della matematica siano finiti o meno è uno dei problemi maggiori che questi numeri portano.

Un problema da un milione di dollari… letteralmente!

Ebbene sì. È questo il premio per chi risolve uno dei cosiddetti Millennium Problems, sette problemi irrisolti della matematica, tra cui ovviamente quello dei numeri primi. Eppure intorno a questi famigerati enigmi della matematica i misteri non sono pochi.

Basti pensare a Grigory Perelman. Il matematico russo che, dopo sei anni di studio, è riuscito a dimostrare nel 2006 la congettura di Poincaré, una delle proprietà matematiche più dibattute nella branca della topologia. Dopo aver rifiutato l’invito e il premio in denaro, è scomparso.  Solo dopo anni egli ha spiegato alla stampa il motivo del suo rifiuto: un’immeritata scoperta. 

Ad oggi la congettura di Poincaré è l’unico dei sette Millennium Problems ad essere stato risolto.

Applicazione dei numeri primi: da Reimann alla crittografia digitale asimmetrica

Fu nel 1859 che il grande matematico tedesco Georg Bernhard Reimann introdusse una funzione – nota come Zeta di Reimann – che permette di individuare i numeri primi. La validità della Zeta di Reimann è però dimostrata per un miliardo e mezzo di casi. Questa cifra non basta.

Riuscire a trovare un nuovo numero primo è operazione complessa anche per un computer. È per questo che i numeri primi sono usati come base di un ampio insieme di codici usati da internet.

Negli anni Settanta tre ricercatori – Rivest, Shamir, Adleman – svilupparono un algoritmo fondamentale. Al giorno d’oggi questa scoperta è alla base dei cifrari che proteggono i numeri  delle carte di credito o degli accessi online. Oggetto di questo tipo di crittografia – digitale asimmetrica – sono dunque i numeri primi: più alti sono, più il codice sarà sicuro. Per violare il sistema occorrerà risalire al prodotto dei due numeri primi che hanno generato il grande numero.

L’Electronic Frontier Foundation ha messo in palio 150mila dollari per chi troverà un numero primo di un miliardo di cifre, perché sarebbe una garanzia assoluta per la privacy. Nel 2016 è stato scoperto il numero primo più grande. Le sue ventidue milioni di cifre sono riassunte nella sigla M74207281.

Chi sarà il prossimo a scoprire un altro tassello in questo mondo inesplorato?