L’Hotel infinito di Hilbert: il celebre paradosso

L'hotel infinito di Hilbert

Benvenuti al Grand Hotel Hilbert, l’unico albergo al mondo dove non può mai esistere il tutto esaurito! Questo fantastico Hotel Infinito, nato dalla mente di David Hilbert, geniale matematico tedesco, negli anni ‘20, presenta una peculiarità tanto degna da far impazzire qualsiasi direttore d’albergo, ovvero infinite camere, partendo dalla numero 1 senza mai giungere ad una fine.

David Hilbert

Fu uno dei matematici più rivoluzionari del ventesimo secolo. Nacque il 23 gennaio del 1862 a Königsberg, in Prussia (ad oggi Kaliningrad, in Russia). Mostrò fin da giovane uno spiccato talento per la matematica, studiando dopo il liceo all’università di Königsberg, diventando successivamente professore di matematica allUniversità di Göttingen, che, con il suo avvento, divenne uno dei principali centri di ricerca della disciplina a livello mondiale.
Hilbert fu un geniale contributo di numerosi settori matematici, spaziando nella geografia, logica, teoria degli insiemi, degli invarianti, e anche fisica teorica collaborando con Albert Einstein. Nel 1900, durante il Congresso Internazionale dei Matematici che si tenne a Parigi, egli presentò i famosi 23 problemi di Hilbert, lista di quesiti irrisolti che rimangono grattacapi matematici.

Una qualunque giornata lavorativa all’Hotel infinito di Hilbert

Al Grand Hotel Hilbert, che abbiamo già detto essere infinito, c’è ogni giorno una cifra altrettanto infinita di ospiti ad occupare ogni camera, pertanto, il numero di stanze è uguale al numero di ospiti, risultando dunque pieno. Un giorno arriva un nuovo cliente che vuole una stanza. Un hotel normale con un semplice direttore rifiuterebbe il cliente in quanto è tutto occupato, ma questo non è il caso dell’Hotel Infinito: il direttore, che non si scompone, chiede semplicemente agli ospiti di passare alla stanza successiva, quindi, chi stava nella stanza numero 1 passa alla stanza numero 2, chi era alla numero 2 alla numero 3 e così via fino all’infinito, secondo la regola numero di stanza + 1, lasciando la stanza numero 1 vuota e pronta per accogliere il nuovo cliente. Il gioco può essere fatto con un qualsiasi numero finito: supponiamo che questa volta si presentino 28 nuovi ospiti ansiosi di soggiornare al Grand Hotel Hilbert – il direttore d’hotel chiede ai clienti di spostarsi al numero equivalente al loro numero di stanza iniziale + 28, lasciando le prime 28 stanze vuote e pronte per essere occupate.

L’autobus infinito

Il divertimento è appena iniziato! Un giorno arriva un autobus con infiniti passeggeri, tutti che richiedono una camera. Il direttore non si agita, sorride, e mette in atto il suo Trasloco Strategico delle Camere Pari: ogni ospite attuale si trasferisce nella camera con il numero doppio rispetto alla propria. Chi sta nella 1 va nella 2, chi nella 2 va nella 4, chi nella 3 va nella 6, e così via infinitamente. Il risultato? Ora tutte le camere pari (2, 4, 6, 8…) sono occupate, mentre le dispari (1, 3, 5, 7…) sono libere ed infinite, e sono esattamente tutte quelle che servono ai nuovi ospiti. Il direttore, oltre ad aver svolto egregiamente il suo incarico, ha dimostrato che infinito (numeri pari) + infinito (numeri dispari) = infinito.

Infiniti autobus con… infiniti passeggeri!

Ecco arrivata una nuova sfida per il direttore dell’Hotel Infinito di Hilbert: arrivano infiniti autobus, ciascuno con infiniti passeggeri. Il direttore pensa un po’ e ricorda una tecnica segreta che utilizza i numeri primi per far accomodare tutti gli ospiti nell’hotel. Ogni nuovo ospite riceve una camera il cui numero è calcolato come p^n, dove p è un numero primo che rappresenta il suo autobus (quindi autobus 1, 2, 3…) e la sua posizione nell’autobus (20, 12, 25 …). Grazie a una proprietà magica dei numeri, ovvero che ogni numero può essere scomposto in modo unico in fattori primi, ogni ospite ottiene una camera diversa e i numeri non si sovrappongono mai.

L’importanza del paradosso dell’Hotel Infinito di Hilbert

Quello del Grand Hotel Hilbert non è semplicemente un divertente grattacapo matematico, è uno spunto di riflessione sui misteri dell’infinito. Ci insegna in modo pratico che l’infinito non è solo un numero estremamente grande, ma è un posto dove si può aggiungere sempre senza che il totale cambi, oppure si può riorganizzare tutto trovandosi con lo stesso numero di partenza. Il paradosso ha aiutato generazioni di studiosi a comprendere meglio la matematica e il concetto stesso di infinito, arrivando a informazioni che usiamo tutt’oggi in cosmologia, informatica e fisica quantistica.

 

Fonte immagine: Pixabay, Pix-Off

Altri articoli da non perdere
Dialetto canario: le 20 espressioni più usate e il loro significato
Espressioni del dialetto canario

Le espressioni del dialetto canario possono essere scoperte e apprese pienamente solo se si è immersi nel contesto locale. Per Scopri di più

Linguaggio forbito e come usarlo: le parole più ricercate
Linguaggio forbito e come usarlo: le parole più ricercate

Linguaggio forbito: partiamo dalle etimologie Pochi sono a conoscenza del fatto che l’aggettivo qualificativo forbito, associato di frequente a un Scopri di più

L’imperialismo americano: l’America Latina e il Pacifico
L'imperialismo americano: l'America Latina e il Pacifico

L’imperialismo americano è un fenomeno di imperialismo, -termine con cui si indica un processo per cui un certo paese intende Scopri di più

La lingua uigura: una lingua in pericolo di estinzione?
lingua uigura

La lingua uigura è una lingua turca (o lingua turcica) originaria dell’Asia centrale, ed è parlata da circa 10,4 milioni Scopri di più

Dove trascorrere le vacanze in Puglia sul mare con tutti i comfort
Dove trascorrere le vacanze in Puglia sul mare con tutti i comfort

Con l'anno nuovo molti di noi staranno già pensando a dove passare le prossime vacanze estive, e magari qualcuno avrà Scopri di più

L’immigrazione negli Stati Uniti: tra Ottocento e Novecento
Immigrazione negli Stati Uniti

Per parlare di immigrazione negli Stati Uniti tra la fine dell’Ottocento e i primi anni ‘20 del Novecento, dobbiamo necessariamente Scopri di più

A proposito di Federica Di Ruocco

Vedi tutti gli articoli di Federica Di Ruocco

Commenta