Successione di Fibonacci: la bellezza aurea dei numeri

Sequenza di Fibonacci

La successione di Fibonacci è una sequenza di numeri di notevole importanza, introdotta dal matematico italiano che le diede il nome. La sua applicazione spazia dalla risoluzione di problemi teorici fino a descrivere fenomeni presenti in natura, nell’arte e nell’architettura, tanto da essere soprannominata ‘successione divina’.

Chi era Leonardo Pisano, detto Fibonacci

Leonardo Pisano, meglio noto come Fibonacci, fu un celebre matematico italiano vissuto nel XII e XIII secolo. Visse gran parte della propria vita ad Algeri, dove apprese i principi dell’algebra dai maestri arabi. Viaggiò molto e proprio grazie ai tanti spostamenti in Siria, Egitto e Grecia, ebbe modo di conoscere i più grandi ed importanti matematici musulmani. La sua opera più importante è il Liber Abaci (1202), un trattato di aritmetica che fu fondamentale per introdurre e diffondere in Europa il sistema numerico decimale indo-arabico, che usiamo ancora oggi.

L’origine: il problema dei conigli

La successione di Fibonacci nacque da un problema concreto, proposto dall’Imperatore Federico II di Svevia a Pisa nel 1223 durante un torneo di matematici. L’interrogativo era il seguente: quante coppie di conigli si ottengono in un anno, salvo i casi di morte, supponendo che ogni coppia dia alla luce un’altra coppia ogni mese e che le coppie più giovani siano in grado di riprodursi già al secondo mese di vita? Fibonacci fu il primo a rispondere al test, con una velocità tale da sorprendere tutti.

Come funziona la successione di Fibonacci

La risposta al quesito è una sequenza di numeri in cui ogni termine, a parte i primi due, è la somma dei due che lo precedono. La successione è: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… e così via all’infinito. Sebbene la regola sia piuttosto semplice (uno più uno dà due, uno più due dà tre, due più tre dà cinque e via discorrendo), la sua presenza in contesti inaspettati è ciò che la rende così affascinante.

La regola matematica La manifestazione nel mondo reale
Ogni numero è la somma dei due precedenti (es: 5 = 3 + 2). Descrive modelli di crescita e forme presenti in natura.
Formalmente: F(n) = F(n-1) + F(n-2), con F(0)=0 e F(1)=1. Utilizzata per creare proporzioni armoniche in arte e architettura.

La successione in natura, arte e architettura

Ciò che sorprende è il legame profondo tra la natura e i numeri di Fibonacci. Ad esempio, il numero di petali di molti fiori è un numero di Fibonacci (gigli ne hanno 3, ranuncoli 5, delphinium 8, calendule 13). Altri esempi si trovano nella fillotassi, ossia la disposizione delle foglie nel gambo di piante e fiori: una pigna ha 8 o 13 spirali, mentre le file parallele di punte su un ananas sono spesso 8, 13 o 21. I numeri di Fibonacci sono presenti anche nel numero di infiorescenze di ortaggi come il broccolo romanesco.

Oltre alla natura, la successione ha assunto importanza anche in ambito artistico e architettonico. Secondo Pietro Armienti, docente dell’Università di Pisa, le geometrie presenti sulla facciata della chiesa di San Nicola a Pisa potrebbero essere un chiaro riferimento alla successione del matematico. In tempi più recenti, troviamo installazioni artistiche come quella nella stazione Vanvitelli della metropolitana di Napoli, dove i numeri della serie sono disposti a spirale sul soffitto che sovrasta le scale mobili.

Il legame con la sezione aurea

La successione di Fibonacci è strettamente connessa a un altro concetto fondamentale per l’armonia e la bellezza: la sezione aurea (o numero aureo). Facendo il rapporto tra due numeri consecutivi della serie (es. 8/5, 13/8, 21/13), man mano che si procede, il risultato si avvicina sempre di più al numero aureo, circa 1,618. Questa proporzione, ritenuta esteticamente perfetta sin dall’antichità, è stata utilizzata da scultori, pittori e architetti per creare opere di grande equilibrio e armonia. Dunque, possiamo affermare che la natura, l’arte e la geometria, siano fattori primari di bellezza e perfezione, strettamente collegati alla famosa e affascinante successione di Fibonacci.

Immagine in evidenza: pixabay.com

Articolo aggiornato il: 05/09/2024

Altri articoli da non perdere
Effetto farfalla (Butterfly Effect): significato, esempi e benefici
Effetto farfalla: significato e benefici

«Il battito d'ali di una farfalla può provocare un uragano dall'altra parte del mondo». Una semplice frase, tratta dal film Scopri di più

Il paradosso di Fermi: perché non abbiamo ancora incontrato gli alieni?
Paradosso di Fermi: dove sono gli alieni?

La volontà di scoprire se ci siano forme di vita extraterrestre in grado di comunicare con noi non è soltanto Scopri di più

Il Santuario di Pompei: storia, arte e devozione alla Beata Vergine del Rosario
Santuario di Pompei

Nel cuore di una delle città più amate e visitate sul suolo campano e partenopeo sorge il maestoso Santuario di Scopri di più

Teoria della finestra rotta: cos’è, esempi e l’applicazione a New York
Teoria della finestra rotta

La Teoria della finestra rotta è uno studio di carattere criminologico secondo cui i segni visibili del crimine e del Scopri di più

Cosa sono i campi di concentramento: storia di ciò che è stato
campi di concentramento

Cosa sono i campi di concentramento? Si tratta di strutture carcerarie all’aperto, utilizzate per la detenzione, la repressione e lo Scopri di più

Chi è il dio Ra: poteri e caratteristiche
Chi è il dio Ra: poteri e caratteristiche

Il dio Ra è una delle principali e più complesse divinità dell’Egitto, identificato principalmente con il sole di mezzogiorno nel Scopri di più

Condividi l'articolo!

A proposito di Gerardina Di massa

Vedi tutti gli articoli di Gerardina Di massa

Commenta